无线感应耦合充电
大量的感应充电器采用返驰式转换器。感应充电为医疗设备电池提供充电电能,同时,感应充电器也被用于大量的便携式设备(如牙刷)中。
缩小充电电池尺寸有助于减小采用无线感应充电电路的植入式医疗设备的体积。无线感应充电器可为设备上安装的微小薄膜(如Cymbet EnerChip)充电式储能器件安全地充电。感应充电器采用了并联LC(电感、电容)谐振储能电路的工作原理。图1所示为Cymbet公司的CBC-EVAL-11 RF感应充电器评估套件。
Vishay 595D系列1000uF钽电容(图1中橘黄 色器件)被用作Cymbet接收电路板的C5电容,为无线电发射等负载提供脉冲电流。
此款感应充电器的输入与输出之间具有良好的隔离,这是医用设备的重要要求。
在一些电压较高的感应充电器应用中,需要采用高压稳定的电容作为谐振电容。由于感应充电器的初级线圈需要采用交流电压驱动,因此必须对电容进行相应的调整。感应充电器需要具备高击穿电压(VBD)性能,同时,某些应用中还需要防护高压电弧放电。为避免电弧放电,电路板一般敷有保护涂层,或者通过合理安排元器件布局达到高压侧与电路板其他部分隔离的效果,等。但这种方法往往需要很大的电路板空间,因为高压电路通常采用体积较大的引线型通孔插装电容。
高压电弧防护电容解决方案
为解决这一问题,Vishay推出了一系列的HVArc(高压电弧)防护MLCC(多层贴片陶瓷电容),可防止电弧放电,同时节省空间。这些新器件在较高的电压定额内具有最大容量,并且提高了电压击穿的耐受能力。高压电弧放电会造成断路,并有可能损坏其他元器件。标准的高压SMD电容最终将会失效短路,这取决于电弧放电的次数和存在问题的部分。Vishay HVArc防护电容可以吸收所有的能量,因此,此电容能够在高压下进行正常工作,至少在达到高压击穿极限之前,不会产生破坏性电弧放电。
HVArc防护电容的VBD分布由器件采用的独特设计来控制,VBD可达3kV或以上。本产品采用了NPO和X7R电介质。
无线感应耦合充电
大量的感应充电器采用返驰式转换器。感应充电为医疗设备电池提供充电电能,同时,感应充电器也被用于大量的便携式设备(如牙刷)中。
缩小充电电池尺寸有助于减小采用无线感应充电电路的植入式医疗设备的体积。无线感应充电器可为设备上安装的微小薄膜(如Cymbet EnerChip)充电式储能器件安全地充电。感应充电器采用了并联LC(电感、电容)谐振储能电路的工作原理。图1所示为Cymbet公司的CBC-EVAL-11 RF感应充电器评估套件。
Vishay 595D系列1000uF钽电容(图1中橘黄 色器件)被用作Cymbet接收电路板的C5电容,为无线电发射等负载提供脉冲电流。
此款感应充电器的输入与输出之间具有良好的隔离,这是医用设备的重要要求。
在一些电压较高的感应充电器应用中,需要采用高压稳定的电容作为谐振电容。由于感应充电器的初级线圈需要采用交流电压驱动,因此必须对电容进行相应的调整。感应充电器需要具备高击穿电压(VBD)性能,同时,某些应用中还需要防护高压电弧放电。为避免电弧放电,电路板一般敷有保护涂层,或者通过合理安排元器件布局达到高压侧与电路板其他部分隔离的效果,等。但这种方法往往需要很大的电路板空间,因为高压电路通常采用体积较大的引线型通孔插装电容。
高压电弧防护电容解决方案
为解决这一问题,Vishay推出了一系列的HVArc(高压电弧)防护MLCC(多层贴片陶瓷电容),可防止电弧放电,同时节省空间。这些新器件在较高的电压定额内具有最大容量,并且提高了电压击穿的耐受能力。高压电弧放电会造成断路,并有可能损坏其他元器件。标准的高压SMD电容最终将会失效短路,这取决于电弧放电的次数和存在问题的部分。Vishay HVArc防护电容可以吸收所有的能量,因此,此电容能够在高压下进行正常工作,至少在达到高压击穿极限之前,不会产生破坏性电弧放电。
HVArc防护电容的VBD分布由器件采用的独特设计来控制,VBD可达3kV或以上。本产品采用了NPO和X7R电介质。用于MRI的新型无磁电容
磁共振成像(MRI)设备内部或周边电路中所使用的电容及其他电子元器件需要屏蔽或封装在MRI室外。电容的电介质、电极材料或端接材料中可能含有铁质或磁性材料。为提高图像分辨率,MRI系统的磁场水平不断提高,而MRI室内使用的电容会造成磁场畸变。因此,需要减少或完全消除大部分电容中的磁性材料。
最新推出的系列MLCC在电极和端接结构中采用非铁材料,来满足消除磁化的要求。无磁结构可以采用X7R和NPO电介质。外形尺寸为0402至1812,符合EIA规格。Vishay还在最终测试时采用了专用电容分选设备,以确保所有无磁电容均能符合技术要求。